66 research outputs found

    Combinatorial Problems in Energy Networks - Graph-theoretic Models and Algorithms

    Get PDF
    Energienetze bilden das Rückgrat unserer Gesellschaft, die unter anderem unsere Nahrungskette und andere wichtige Infrastrukturen, wie die Wasser- und Wärmeversorgung, bestimmen. Um die grundlegenden menschlichen Bedürfnisse zu befriedigen, müssen wir ein nachhaltigeres und umweltfreundlicheres Verhalten im Allgemeinen und in Energienetzen im Speziellen an den Tag legen. In dieser Arbeit geht es um Energienetze, wobei wir uns auf Stromnetze spezialisieren und uns darauf fokussieren, wie wir die vorhandene Infrastruktur besser ausnutzen können. Wir merken an, dass die Ergebnisse aus dieser Arbeit auch auf andere Energienetze übertragen werden können [Gro+19] und bestimmte auftretende Phänomene legen es nahe, dass sich einige Ergebnisse eventuell auch auf Verkehrsnetze übertragen lassen. Diese Arbeit besteht aus vier inhaltlichen Teilen. Der erste Teil beschäftigt sich mit der Funktionsweise und Struktur von elektrischen Flüssen. Der zweite und dritte inhaltliche Teil der Arbeit beschäftigt sich jeweils mit der effizienten Ausnutzung der vorhandenen Energienetzinfrastruktur. Dabei verstehen wir hier unter effizienter Ausnutzung entweder die Maximierung der Gesamterzeugung und die damit verbundene Erweiterung des Betriebspunktes oder die Minimierung der Erzeugungskosten verstehen. Das elektrische Netz besteht aus drei Spannungsebenen, die wir als Hoch-, Mittel-, und Niederspannungsebene bezeichnen. Das traditionelle elektrische Netz ist auf eine zentrale Energieversorgung ausgelegt, bei der die Erzeuger sich in der Hochspannungsebene befinden. Der elektrische Fluss im klassischen Sinne fließt von der Hoch- in die Mittel- und Niederspannungsebene. Die industriellen Verbraucher befinden sich zumeist auf der Mittelspannungsebene, während sich die Haushalte und kleineren Industrien in der Niederspannungsebene befinden. Durch nachhaltige Erzeuger, die ihre Energie aus erneuerbaren Energien wie beispielsweise Wind gewinnen, findet nun ein Paradigmenwechsel im elektrischen Netz statt. Diese nachhaltigen Erzeuger befinden sich zumeist im Nieder- und Mittelspannungsnetz und der elektrische Fluss könnte nun bidirektional fließen. Dieser Paradigmenwechsel kann zu Engpässen und anderen Problemen führen, da das elektrische Netz für ein solches Szenario nicht konzipiert ist. Eine Hauptaufgabe dieser Arbeit war die Identifizierung von Problemstellungen in elektrischen Netzen. Die extrahierten Problemstellungen haben wir dann in graphentheoretische Modelle übersetzt und Algorithmen entwickelt, die oftmals Gütegarantien besitzen. Wir haben uns dabei zunächst auf die Modellierung von elektrischen Netzen und das Verhalten von Flüssen in diesen Netzen mit Hilfe von Graphentheorie konzentriert. Zur Modellierung des elektrischen Flusses nutzen wir eine linearisierte Modellierung, die mehrere vereinfachende Annahmen trifft. Diese linearisierte Modellierung ist für Hochspannungsnetze im Allgemeinen eine gute Annäherung und macht das Entscheidungsproblem für elektrische Flüsse, das heißt, ob ein gültiger elektrischer Fluss für eine bestimmte Konfiguration des Netzes und für einen bestimmten Verbrauch und eine bestimmte Erzeugung existiert, in Polynomialzeit lösbar. Leistungsfluss. Fokusiert man sich auf das vereinfachte Zulässigkeitsproblem von elektrischen Flüssen und den Maximalen Leistungsflüssen, so existieren verschiedene mathematische Formulierungen, die den Leistungsfluss beschreiben. Auf allgemeinen Graphen ist es oftmals der Fall, dass graphentheoretischen Flüsse keine zulässigen Leistungsflüsse darstellen. Im Gegensatz zu graphentheoretischen Flüssen balancieren sich Leistungsflüsse. Wir diskutieren diese Eigenschaft aus graphentheoretischer Sicht. Die verschiedenen mathematischen Formulierungen geben uns strukturelle Einblicke in das Leistungsflussproblem. Sie zeigen uns die Dualität der zwei Kirchhoffschen Regeln. Diese nutzen wir um einen algorithmischen Ansatz zur Berechnung von Leistungsflüssen zu formulieren, der zu einem Algorithmus für Leistungsflüsse auf planaren Graphen führen könnte. Die Einschränkung auf planare zweifachzusammenhängende Graphen ist vertretbar, da elektrische Netze im Allgemeinen planar sind [COC12,S.13]. Zudem hilft uns diese Sichtweise, um Analogien zu anderen geometrischen Problemen herzustellen. Kontinuierliche Änderungen. Da graphentheoretische Flüsse sich in vielen Fällen anders als elektrische Flüsse verhalten, haben wir versucht, das Stromnetz mittels Kontrolleinheiten so auszustatten, dass der elektrische Fluss den gleichen Wert hat wie der graphentheoretische Fluss. Um dieses Ziel zu erreichen, platzieren wir die Kontrolleinheiten entweder an den Knoten oder an den Kanten. Durch eine Suszeptanz-Skalierung, die durch die Kontrolleinheiten ermöglicht wird, ist es nun prinzipiell möglich jeden graphentheoretischen Fluss elektrisch zulässig zu machen. Dabei konnten wir zeigen, dass das gezielte Platzieren von Kontrolleinheiten die Kosten der Erzeugung von elektrischer Leistung durch Generatoren im elektrischen Netz senken kann und den Betriebspunkt des Netzes in vielen Fällen auch erweitert. Platziert man Kontrolleinheiten so, dass der verbleibende Teil (d.h. das Netz ohne die Kontrolleinheiten) ein Baum oder Kaktus unter geeigneter Begrenzung der Kapazitäten ist, so ist es möglich, jeden graphentheoretischen Fluss als elektrisch zulässigen Fluss mit gleichwertigen Kosten zu realisieren. Die Kostensenkung und die Erweiterung des Betriebspunktes konnten wir experimentell auf IEEE-Benchmark-Daten bestätigen. Diskrete Änderungen. Die oben beschriebenen Kontrolleinheiten sind eine idealisierte, aktuell nicht realisierbare Steuereinheit, da sie den elektrischen Fluss im gesamten Leistungsspektrum einstellen können. Damit ist vor allem gemeint, dass sie den elektrischen Fluss auf einer Leitung von „Die Leitung ist abgeschaltet.“ bis zur maximalen Kapazität stufenlos einstellen können. Diese Idealisierung ist auch ein großer Kritikpunkt an der Modellierung. Aus diesem Grund haben wir versucht, unser Modell realistischer zu gestalten. Wir haben zwei mögliche Modellierungen identifiziert. In der ersten Modellierung können Leitungen ein- und ausgeschaltet werden. Dieser Prozess wird als Switching bezeichnet und kann in realen Netzen mittels Circuit Breakers (dt. Leistungsschaltern) realisiert werden. Die zweite Modellierung kommt der Kontrolleinheiten-Modellierung sehr nahe und beschäftigt sich mit der Platzierung von Kontrolleinheiten, die die Suszeptanz innerhalb eines gewissen Intervalls einstellen können. Diese wirkt im ersten Moment wie eine Verallgemeinerung der Schaltungsflussmodellierung. Nutzt man jedoch eine realistischere Modellierung der Kontrolleinheiten, so ist das Einstellen der Suszeptanz durch ein Intervall begrenzt, das das Ausschalten einer Leitung nicht mit beinhaltet. Sowohl ein optimales (im Sinne der Minimierung der Gesamterzeugungskosten oder der Maximierung des Durchsatzes) Platzieren von Switches als auch ein optimales Platzieren von Kontrolleinheiten ist im Allgemeinen NP-schwer [LGH14]. Diese beiden Probleme ergänzen sich dahingehend, dass man den maximalen graphentheoretischen Fluss, mit den zuvor genannten Platzierungen annähern kann. Für Switching konnten wir zeigen, dass das Problem bereits schwer ist, wenn der Graph serien-parallel ist und das Netzwerk nur einen Erzeuger und einen Verbraucher besitzt [Gra+18]. Wir haben sowohl für den Maximalen Übertragungsschaltungsfluss (engl. Maximum Transmission Switching Flow; kurz MTSF) als auch für den optimalen Übertragungsschaltungsfluss (engl. Optimal Switching Flow; kurz OSF) erste algorithmische Ansätze vorgeschlagen und gezeigt, dass sie auf bestimmten graphentheoretischen Strukturen exakt sind, und dass auf anderen graphentheoretischen Strukturen Gütegarantien möglich sind [Gra+18]. Die Algorithmen haben wir dann auf allgemeinen Netzen evaluiert. Simulationen führen zu guten Ergebnissen auf den NESTA-Benchmark-Daten. Erweiterungsplanung auf der Grünen Wiese. Eine vom Rest der Arbeit eher losgelöste Fragestellung war die Verkabelung von Windturbinen. Unter Verwendung einer Metaheuristik haben wir gute Ergebnisse im Vergleich zu einem „Mixed Integer Linear Program“ (MILP; dt. gemischt-ganzzahliges lineares Programm) erzielt, das wir nach einer Stunde abgebrochen haben. Die Modellierung der Problemstellung und die Evaluation des Algorithmus haben wir auf der ACM e-Energy 2017 veröffentlicht [Leh+17]. Schlusswort. Abschließend kann man sagen, dass mit dieser Arbeit allgemeine, tiefliegende Aussagen über elektrische Netze getroffen wurden, unter der Berücksichtigung struktureller Eigenschaften unterschiedlicher Netzklassen. Diese Arbeit zeigt wie das Netz ausgestaltet sein muss, um bestimmte Eigenschaften garantieren zu können und zeigt verschiedene Lösungsansätze mit oft beweisbaren Gütegarantien auf

    Scalable Exact Visualization of Isocontours in Road Networks via Minimum-Link Paths

    Get PDF
    Isocontours in road networks represent the area that is reachable from a source within a given resource limit. We study the problem of computing accurate isocontours in realistic, large-scale networks. We propose isocontours represented by polygons with minimum number of segments that separate reachable and unreachable components of the network. Since the resulting problem is not known to be solvable in polynomial time, we introduce several heuristics that run in (almost) linear time and are simple enough to be implemented in practice. A key ingredient is a new practical linear-time algorithm for minimum-link paths in simple polygons. Experiments in a challenging realistic setting show excellent performance of our algorithms in practice, computing near-optimal solutions in a few milliseconds on average, even for long ranges

    Operating Power Grids with Few Flow Control Buses

    Full text link
    Future power grids will offer enhanced controllability due to the increased availability of power flow control units (FACTS). As the installation of control units in the grid is an expensive investment, we are interested in using few controllers to achieve high controllability. In particular, two questions arise: How many flow control buses are necessary to obtain globally optimal power flows? And if fewer flow control buses are available, what can we achieve with them? Using steady state IEEE benchmark data sets, we explore experimentally that already a small number of controllers placed at certain grid buses suffices to achieve globally optimal power flows. We present a graph-theoretic explanation for this behavior. To answer the second question we perform a set of experiments that explore the existence and costs of feasible power flow solutions at increased loads with respect to the number of flow control buses in the grid. We observe that adding a small number of flow control buses reduces the flow costs and extends the existence of feasible solutions at increased load.Comment: extended version of an ACM e-Energy 2015 poster/workshop pape

    Towards negative cycle canceling in wind farm cable layout optimization

    Get PDF
    Abstract In the Wind Farm Cabling Problem (WCP) the task is to design the internal cabling of a wind farm such that all power from the turbines can be transmitted to the substations and the costs for the cabling are minimized. Cables can be chosen from several available cable types, each of which has a thermal capacity and cost. Until now, solution approaches mainly use Mixed-integer Linear Programs (MILP) or metaheuristics. We present our current state of research on a fast heuristic specifically designed for WCP. We introduce an algorithm that iteratively improves a cable layout by finding and canceling negative cycles in a suitably defined network. Our simulations on publicly available benchmark sets show that the heuristic is not only fast but it tends to produce good results. Currently our algorithm gives better solutions on large wind farms compared to an MILP solver. However, on small to medium instances the solver performs better in terms of solution quality, which represents a starting point for future work

    Engineering Negative Cycle Canceling for Wind Farm Cabling

    Get PDF
    In a wind farm turbines convert wind energy into electrical energy. The generation of each turbine is transmitted, possibly via other turbines, to a substation that is connected to the power grid. On every possible interconnection there can be at most one of various different cable types. Each cable type comes with a cost per unit length and with a capacity. Designing a cost-minimal cable layout for a wind farm to feed all turbine production into the power grid is called the Wind Farm Cabling Problem (WCP). We consider a formulation of WCP as a flow problem on a graph where the cost of a flow on an edge is modeled by a step function originating from the cable types. Recently, we presented a proof-of-concept for a negative cycle canceling-based algorithm for WCP [Sascha Gritzbach et al., 2018]. We extend key steps of that heuristic and build a theoretical foundation that explains how this heuristic tackles the problems arising from the special structure of WCP. A thorough experimental evaluation identifies the best setup of the algorithm and compares it to existing methods from the literature such as Mixed-integer Linear Programming (MILP) and Simulated Annealing (SA). The heuristic runs in a range of half a millisecond to under two minutes on instances with up to 500 turbines. It provides solutions of similar quality compared to both competitors with running times of one hour and one day. When comparing the solution quality after a running time of two seconds, our algorithm outperforms the MILP- and SA-approaches, which allows it to be applied in interactive wind farm planning

    Invading the Occupied Niche: How a Parasitic Copepod of Introduced Oysters Can Expel a Congener From Native Mussels

    Get PDF
    In species introductions, non-native species are often confronted with new niches occupied by more specialized natives, and for introduced parasites this conflict can be amplified because they also face novel hosts. Despite these obstacles, invasions of introduced parasites occur frequently, but the mechanisms that facilitate parasite invasion success are only rarely explored. Here, we investigated how the parasitic copepod Mytilicola orientalis, that recently spilled over from its principal host - the Pacific oyster Crassostrea gigas, managed to invade the niche of blue mussel Mytilus edulis intestines, which is densely occupied by its specialist congener, Mytilicola intestinalis. From field observations demonstrating invasion dynamics in nature, we designed a series of experiments addressing potential mechanisms facilitating a successful occupation of the new niche. As expected the specialist M. intestinalis can only infect mussel hosts, but displayed higher infection success there than M. orientalis in both principal host species combined. In the absence of direct competitive interactions M. orientalis compensated its lower infection success (1) by recurrent spill-over from its high-fitness reservoir oyster host, and (2) by active aggregation interference enhancing its own mating success while limiting that of M. intestinalis. The introduced parasite could thus avoid direct competition by changing its own epidemiology and indirectly decreasing the reproductive success of its competitor in the new host. Such mechanisms outside of direct competition have seldom been considered, but are crucial to understand invasion success, parasite host range and community assembly in the context of species introductions

    Die Lebensretterolympiade: Eine themen- und fächerübergreifende Möglichkeit zur Überprüfung des Lernerfolgs im Rahmen von Reanimations- und Gesundheitsunterricht

    Get PDF
    Schulen stehen im Fokus als eine geeignete Institution, um Erste-Hilfe-Wissen zur Laienreanimation, zur Gesundheit und zur Prävention zu unterrichten und so sukzessive in der Gesellschaft zu etablieren. Die Implementierung einer solchen Thematik wurde in den letzten Jahren intensiv diskutiert und empfohlen. Dieser Beitrag ist darauf ausgerichtet, eine unterrichtspraktische Möglichkeit aufzuzeigen, wie der Lernabschluss von Reanimations- sowie Gesundheitsunterricht im schulischen Biologie- bzw. Sportunterricht gestaltet werden könnte. Dabei wird eine alternative Überprüfungsform, eine „Lebensretterolympiade“, genutzt. Mit der Konzeption der Lebensretterolympiade sollen zwei Bereiche verbunden werden: Es sollen Handlungskompetenz und Sicherheit im Umgang mit Notfallsituationen und zudem mit Blick auf das Thema der eigenen Herz-Kreislauf-Gesundheit gefordert und gefördert werden. Spielerisch und dennoch in realitätsnahen Szenarien und Aufgaben überprüfen die Schüler*innen ihr Wissen und ihre Handlungsfähigkeit. Wie funktioniert und adaptiert sich das menschliche Herz-Kreislauf-System? Worauf kommt es bei der Wiederbelebung an und wie arbeite ich im Team? Wie erkenne ich akute Kreislaufstörungen und wie reagiere ich darauf? Diese im vorhergehenden Unterricht thematisierten Fragen greift die Olympiade beispielhaft auf und ist daher auch anschlussfähig an Inhalte und Kompetenzziele von Lehrplänen etwa in Sport und Biologie. Der Beitrag ordnet das Material in einen didaktisch-empirischen Kontext ein und präsentiert die Unterrichtsmaterialien zusammen mit Hinweisen für die Nutzung durch Lehrkräfte

    European integration assessed in the light of the 'rules vs. standards debate'

    Get PDF
    The interplay of various legal systems in the European Union (EU) has long triggered a debate on the tension between uniformity and diversity of Member States' (MS) laws. This debate takes place among European legal scholars and is also paralleled by economic scholars, e.g. in the ambit of the 'theory of federalism'. This paper takes an innovative perspective on the discrepancy between 'centralized' and 'decentralized' law-making in the EU by assessing it with the help of the rules versus standards debate. When should the EU legislator grant the national legislator leeway in the formulation of new laws and when should all be fixed ex ante at European level? The literature on the 'optimal shape of legal norms' shall be revisited in the light of law-making in the EU, centrally dealing with the question how much discretion shall be given to the national legislator; and under which circumstances. This paper enhances the established decisive factors for the choice of a rule or a standard in a national setting (complexity, volatility, judges' specialization and frequency of application) by two new crucial factors (switching costs and the benefit of uniformity in terms of information costs) in order to assess law-making policies at EU level
    corecore